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Abstract. The problems that we consider in this paper are as follows. Let A1, . . . , Ak be
square matrices (over reals). Let W = w(A1, . . . , Ak) be a random product of n matrices.
What is the expected absolute value of the largest (in the absolute value) entry in such a
random product? What is the (maximal) Lyapunov exponent for a random matrix product
like that? We give a complete answer to the first question. For the second question, we offer
a very simple and efficient method to produce an upper bound on the Lyapunov exponent.

1. Introduction

The first problem that we consider in this paper is as follows. Let A1, . . . , Ak be square
matrices (over reals). Let W = w(A1, . . . , Ak) be a random product of n matrices. What
is the expected absolute value of the largest (in the absolute value) entry in such a random
product?

To make the exposition easier to follow, we do what some other authors do: we limit the
exposition to the case of just two matrices, A and B. By a “random product” of A and B
we will typically mean a product of matrices where each matrix is either A (with probability
p) or B (with probability 1− p).

In Section 2, we show that the above problem has a surprisingly simple solution.

Theorem 1. Suppose all eigenvalues of the matrix M = pA + (1 − p)B are real numbers,
and let the largest in the absolute value eigenvalue of M , call it µ, be positive and unique
(i.e., there is no other eigenvalue of M with the same absolute value). Then the expectation
of the largest (in the absolute value) entry of a random product w(A,B) of length n is Θ(µn).

Theorem 1 applies, in particular, to the case where the matrix M = pA + (1 − p)B
has only positive entries; then the existence of the largest (positive) real eigenvalue (the
Perron–Frobenius eigenvalue) is guaranteed by the Perron–Frobenius theorem. However,
conditions of Theorem 1 are satisfied for many matrices with negative entries as well.

The proof of Theorem 1 is given at the end of Section 2.
A more difficult problem, of interest in the theory of stochastic processes, is to estimate

L = limn→∞
n
√

||w(A,B)||, where ||w(A,B)|| denotes the norm of the matrix W = w(A,B).
The natural logarithm of L is what is called the (maximal) Lyapunov exponent of a random
product of A and B, see e.g. [8].

For strictly positive non-singular matrices, Pollicott [8] reported an algorithm to estimate
the Lyapunov exponent λ = logL with any desired precision. Pollicott mentions that “it
is a fundamental problem to find both an explicit expression for λ and a useful method of
accurate approximation”.

Our contribution to this problem is a very simple and efficient method to produce an
upper bound on the Lyapunov exponent based on Theorem 1 and the following
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Theorem 2. Let A and B be d×d matrices over reals. Suppose the matrix M = pA+(1−p)B
satisfies conditions of Theorem 1, and let µ be the (unique) largest positive eigenvalue of M .
Then the Lyapunov exponent λ of a random product of matrices A and B satisfies λ ≤ log µ
with probability 1.

Theorem 1 and Theorem 2 generalize to an arbitrary finite collection {A1, . . . , Ak} of
matrices, not just for pairs.

Theorem 2, in combination with Theorem 1, gives a very simple and efficient method for
bounding the Lyapunov exponent from above. We note that altogether different (analytical)
methods for bounding the Lyapunov exponent were previously used in the literature, see
e.g. [5], [9], [10], and [13]. We compare our bounds to theirs for some particular pairs of
matrices in Sections 3 and 4, and summarize advantages and disadvantages of our method
in the concluding Section 5.

We also mention that our method applies to a larger class of matrices than methods of
[5], [9], [13] and others do. In particular, we do not require all the entries of A and B to be
non-negative. Neither do we have any kinds of non-singularity conditions on matrices Ai;
again, what matters for our approach is properties of just the “expectation matrix” M . For
example, in [8] one of the requirements is that all matrices Ai are non-singular. In [10], this
was relaxed to Ai not having a row or a column of zeros. With our approach, if we take,

say, A =

(
0 0
2 1

)
, B =

(
0 2
0 1

)
, p = 1

2
, then M = pA + (1− p)B =

(
0 1
1 2

)
, and this

matrix M satisfies all conditions of Theorem 2.
Finally, we note that it is also an important problem to determine the maximum pos-

sible (in the absolute value) entry G(n) in a product w(A,B) of length n. The number

limn→∞
n
√

|G(n)| is called the joint spectral radius of the pair (A,B) of matrices, see e.g.
[4]. Computing the joint spectral radius is a difficult problem in general, although there are
results in various special cases, e.g. [1], [3], [6], [7]. Computing the joint spectral radius of
pairs of matrices over integers has important real-life applications, see [11] for a survey.

2. Average Growth

Perhaps surprisingly, computing the average growth rate of the entries in a random product
of n matrices A and B (where each factor is A or B with probability p and 1−p, respectively)
is easier than computing the maximum growth rate (i.e., the joint spectral radius).

A straightforward method for computing the average growth rate is based on solving a
system of linear recurrence relations with constant coefficients. To illustrate this method,
we start with a couple of particular examples. First we determine the average growth rate
of the largest entry in a random product, for p = 1

2
, of n matrices, each taken from the

pair (A(k), B(m)) for a couple of values of k and m, where A(k) =

(
1 k
0 1

)
, B(m) =(

1 0
m 1

)
. Then we handle a pair of matrices from Pollicott’s paper [8].

2.1. Average growth for products of A(1) and B(1).
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Let

(
an bn
cn dn

)
denote the result of multiplying n matrices where each factor is A = A(1) or

B = B(1) with probability 1
2
. Denote the expectation of an by ān, etc. Then, using linearity

of the expectation, we have the following recurrence relations for the expectations:

ān = 1
2
ān−1 +

1
2
(ān−1 + b̄n−1) = ān−1 +

1
2
b̄n−1.

b̄n = 1
2
(ān−1 + b̄n−1) +

1
2
b̄n−1 =

1
2
ān−1 + b̄n−1.

The same recurrence relations hold (independently) for c̄n and d̄n, so it is sufficient to handle
just ān and b̄n.

Following the usual method of solving a “square” system of linear recurrence relations
with constant coefficients, we write it in the matrix form:

(ān, b̄n) = M · (ān−1, b̄n−1), where vectors on the left and on the right should be interpreted

as columns. The matrix M here is M =

(
1 1

2
1
2

1

)
.

The solution of the system therefore is (ān, b̄n) = Mn · (1, 0). The largest eigenvalue of the
matrix M in this case is 3

2
, so the average growth rate is µ = 3

2
.

2.2. Average growth for products of A(2) and B(2).

Here we get the following recurrence relations for the expectations ān, b̄n, c̄n, d̄n of the entries

in a product

(
an bn
cn dn

)
of n matrices:

ān = 1
2
ān−1 +

1
2
(ān−1 + 2b̄n−1) = ān−1 + b̄n−1.

b̄n = 1
2
(2ān−1 + b̄n−1) +

1
2
b̄n−1 = ān−1 + b̄n−1.

From this we see that the corresponding matrix M is

(
1 1
1 1

)
, and the largest eigenvalue

of the matrix M is 2.
Thus, in this case the average growth rate is µ = 2.

2.3. Average growth for products of matrices from Pollicott’s paper.

In [8], Pollicott considered the following two matrices: A =

(
2 1
1 1

)
, B =

(
3 1
2 1

)
.

Using the same method as in the previous subsections, we have the following system of
recurrence relations for the expectations:
ān = 1

2
(2ān−1 + b̄n−1) +

1
2
(3ān−1 + 2b̄n−1) =

5
2
ān−1 +

3
2
b̄n−1.

b̄n = 1
2
(ān−1 + b̄n−1) +

1
2
(ān−1 + b̄n−1) = ān−1 + b̄n−1.

Therefore, the corresponding matrix M is

(
5
2

3
2

1 1

)
, and the largest eigenvalue of the

matrix M is 7+
√
33

4
.

Thus, in this case the average growth rate is µ = 7+
√
33

4
≈ 3.186.
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2.4. Proof of Theorem 1. Instead of producing a matrix M from a system of recurrence
relations, one can just compute the matrixM of such a system directly, asM = pA+(1−p)B.
If all eigenvalues of the matrix M are distinct real numbers, then the largest eigenvalue (the
Perron–Frobenius eigenvalue) of this matrix will give the average growth rate we are looking
for because it will determine the growth rate of the solutions of the corresponding system of
recurrence relations. This establishes Theorem 1 from the Introduction. 2

For example, for the pair (A(k), B(k)) (with positive k) with p = 1
2
, we have M =

1
2
(A(k) + B(k)) =

(
1 k

2
k
2

1

)
. The largest eigenvalue of this matrix is 1 + k

2
, so the average

growth rate of entries in a random product of matrices is µ = 1 + k
2
.

3. Upper bounds on the Lyapunov exponent

Now we are going to look at the growth of the entries in a random product of n matrices
A and B of size d×d, where each factor is A or B with probability p and 1− p, respectively.
If the largest entry in such a product is of magnitude Θ(sn), then we will call s the generic
growth rate of entries in a random matrix product.

Pollicott [8] considered a random product of matrices where each matrix comes from a
finite collection {M1, . . . ,Mk} of matrices and studied the growth of the norm of such a
product when the number n of factors in a product goes to infinity. To relate what we call
the generic growth rate s to what is called the (maximal) Lyapunov exponent λ in the theory
of stochastic processes, we mention that by a classical result of Kesten and Furstenberg [2],

(1) λ = lim
n→∞

1

n
log ||M1M2 · · ·Mn|| = log( lim

n→∞
n
√

||M1M2 · · ·Mn||),

where log denotes the natural logarithm and ||M || denotes the norm of a matrix M . Any
sub-multiplicative norm can be used here.

Pollicott [8] offered an algorithm that allows to determine the growth rate of the largest
entry in a random product of n non-singular strictly positive matrices A and B with any
desired precision.

In this section, we offer a simple and efficient method of estimating the Lyapunov exponent
based on Theorem 2 from the Introduction. First we give a proof of Theorem 2.

3.1. Proof of Theorem 2.

Proof. Denote by Mn = X1X2 · · ·Xn a random product of n matrices of size d × d, where
each Xi is either A or B. By F (n) = ||X1X2 · · ·Xn|| we denote the max norm of the matrix
Mn, i.e., the maximum of the absolute values of the entries of Mn. To make this norm
sub-multiplicative, we scale it by multiplying it by d.
By [2, Theorem 1, inequality (2.3)], we have:

(2) lim
n→∞

1

n
log(F (n)) ≤ lim

n→∞

1

n
E[log(F (n))]

with probability 1. At the same time, by Jensen’s lemma we have

(3) lim
n→∞

1

n
E[log(F (n))] ≤ lim

n→∞

1

n
log(E[(F (n))]) = lim

n→∞
log( n

√
E[(F (n)]) = log µ.
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The last equality follows from our Theorem 1.
□

4. Examples

In all examples in this section, we handle products of matrices where each factor is A or
B with probability 1

2
.

For the pair of matrices A(k) =

(
1 k
0 1

)
, B(m) =

(
1 0
m 1

)
with positive k and m,

Corollary 1 from [13] gives the following upper bound for the Lyapunov exponent: λ ≤
1
4
[c + log(

√
km + 1/

√
km) + 1

2
log(1 + km)], where c is a constant approximately equal to

1.0157.

Our method givesM = 1
2

(
1 k
0 1

)
+ 1

2

(
1 0
m 1

)
=

(
1 k

2
m
2

1

)
, and the largest eigenvalue

of the matrix M is µ = 1+ 1
2

√
km, so log µ = log(1 + 1

2

√
km). Note that our method works

if either both k and m are positive or both are negative.

Thus, if km is large, the method of [13] gives a tighter upper bound for the Lyapunov
exponent λ, whereas our method gives a tighter upper bound for small km. We give a couple
of specific instances below.

(1) In the case of matrices A(1) and B(1) (see Section 2.1), or more generally, A(k) and B( 1
k
),

we have µ = 1.5, so our upper bound for λ in this case is log 1.5 ≈ 0.405. To compare, the
upper bound provided by Corollary 1 from [13] is 0.514, so our upper bound is significantly
tighter in this case.

(2) For the matrices A(2) and B(2), Corollary 1 from [13] gives λ ≤ 0.684. We know from
Section 2.2 that µ = 2 in this case. Therefore, λ ≤ log 2 ≈ 0.693. Thus, for A(2) and B(2)
the upper bound provided by Corollary 1 from [13] is better than ours.

(3) More generally, for the matrices A(k) and B(k), the upper bound from [13, Corollary 1]
gives λ ≤ 1

4
[c+ log(k + 1

k
) + 1

2
log(1 + k2)], which is asymptotically equal to 1

4
c+ 1

2
log k. At

the same time, our method (see Section 2.4) gives λ ≤ log(1+ k
2
). Thus, our method gives a

tighter upper bound on λ for small (positive) k, whereas the method of [13] gives a tighter
upper bound for larger k.

(4) For Pollicott’s matrices A =

(
2 1
1 1

)
, B =

(
3 1
2 1

)
, we have µ = 7+

√
33

4
≈ 3.186,

so our upper bound for λ in this case is log 3.186 ≈ 1.159, whereas Pollicott [8] gives the
following approximation for the actual value of λ: 1.1433...

(5) For the matrices A =

(
3 1
1 3

)
, B =

(
5 2
2 5

)
from the paper [5], we have µ = 5.5,

so our upper bound for λ in this case is log 5.5 ≈ 1.7. The upper bound in [5] is 1.66.., so it
is tighter.

(6) Unlike analytical methods of [5], [9], and [13], our method also works for some ma-
trices that have negative entries, as long as the “expectation matrix” M has only posi-
tive entries, or more generally, satisfies the conditions of our Theorem 1. For example, let
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A =

(
1 −1
0 1

)
, B =

(
1 2
2 1

)
. Then M = 1

2
A + 1

2
B =

(
1 1

2
1 1

)
, so the largest eigen-

value of the matrix M is µ = 1 +
√

1
2
≈ 1.707, and log µ ≈ 0.535, which is an upper bound

on the Lyapunov exponent in this case.

4.1. Series of matrices from Pollicott’s paper [9].

In [9], Pollicott treated the following series of pairs of matrices:

A1(t) =

(
1 + t 1
t 1

)
, A2(t) =

(
1 t
1 1 + t

)
, where t > 0.

The “expectation matrix” for the Bernoulli distribution (1
2
, 1
2
) in this case is M(t) =(

1 + t
2

1
2
+ t

2
1
2
+ t

2
1 + t

2

)
. The largest eigenvalue of the matrix M(t) is µ = t + 1.5, so our upper

bound for the Lyapunov exponent in this case is log(t+ 1.5).

For particular values of t from [9], we have the following comparisons of upper bounds:

• t = 2 : log µ ≈ 1.2528, whereas the upper bound from [9] is ≈ 1.2509.

• t = 1 : log µ ≈ 0.916, whereas the upper bound from [9] is ≈ 0.915.

• t = 0.5 : log µ ≈ 0.6931, whereas the upper bound from [9] is ≈ 0.6936.

• t = 0.4 : log µ ≈ 0.6418, whereas the upper bound from [9] is ≈ 0.6468.

• t = 0.3 : log µ ≈ 0.5878, whereas the upper bound from [9] is ≈ 0.5872.

• t = 0.2 : log µ ≈ 0.5306, whereas the upper bound from [9] is ≈ 0.529.

• t = 0.1 : log µ ≈ 0.47, whereas the upper bound from [9] is ≈ 0.4.

Thus, we have an interesting behavior here: while our upper bounds are very close to
those of [9] (with the exception of the case t = 0.1), for t = 0.4 and t = 0.5 our bounds are
tighter, whereas for other values of t above Pollicott’s bounds are tighter.

5. Conclusions

To summarize, our combinatorial method of producing an upper bound for the Lyapunov
exponent of a random product of matrices has both advantages and disadvantages compared
to analytical methods of [5], [8], [9], [13], and others.

One obvious advantage of our method is unparalleled simplicity and efficiency. Another
advantage is applicability of our method to a larger class of matrices. Most of the time,
methods such as those in [5], [8], [9], [13] require participating matrices to be non-singular
and have only non-negative (or even strictly positive) entries. Our method is insensitive to
that.

To be fair, several authors, e.g. [10], [13], managed to expand the applicability of their
methods to include some matrices with negative entries ([13, Section 2.3]) and some singular
matrices ([10]), although the class of matrices covered by our method still appears to be
significantly larger. We regret to be unable to offer any insights into why this is the case;
the methods are just too different, to the point of having nothing in common.

On the other hand, an obvious disadvantage of our method is that it cannot provide any
error estimates of the obtained bounds on the Lyapunov exponent.
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As for tightness of upper bounds, we have seen in the previous sections that our upper
bounds are sometimes better, sometimes not, compared to those of the above cited papers.

It is hardly possible to tell when or why our method produces tighter upper bounds be-
cause, again, our combinatorial method is way too different from the existing analytical
methods. Given any particular collection of matrices, the easiest way to compare the corre-
sponding upper bounds for the Lyapunov exponent is just to compute them using different
methods and compare the results.

In any case, it is always good to have different approaches to the same problem.
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